Giải:
1) \(\left(x^2-y\right)^3\)
\(=x^6-3x^4y+4x^2y^2-y^3\)
Vậy ...
2) \(\left(x-2+y\right)^3\)
\(=\left(x-2\right)^3+3\left(x-2\right)^2y+3\left(x-2\right)y^2+y^3\)
\(=x^3-3x^2+16x-2^3+3\left(x^2-4x-4\right)y+3\left(x-2\right)y^2+y^3\)
\(=x^3-3x^2+16x-2^3+3x^2-12x-12y+3\left(xy^2-2y^2\right)+y^3\)
\(=x^3-3x^2+16x-2^3+3x^2-12x-12y+3xy^2-6y^2+y^3\)
\(=x^3+4x-8-12y+3xy^2-6y^2+y^3\)
Vậy ...
3) \(\left(z+y^2\right)^3\)
\(=z^3+3z^2y^2+3zy^4+y^6\)
Vậy ...
4) \(\left(x-y+z\right)^3\)
\(=\left(x-y\right)^3+3\left(x-y\right)^2z+3\left(x-y\right)z^2+z^3\)
\(=x^3-3x^2y+3xy^2-y^3+3\left(x^2-2xy+y^2\right)z+3\left(xz^2-yz^2\right)+z^3\)
\(=x^3-3x^2y+3xy^2-y^3+3x^2-6xy+3y^2z+3xz^2-3yz^2+z^3\)
\(=-3x^2y+3xy^2-y^3+4x^2-6xy+3y^2z+3xz^2-3yz^2+z^3\)
Vậy ...