\(\dfrac{1}{a-b}-\dfrac{1}{b}=a+b+\dfrac{a}{b}+\dfrac{b}{a}+1\)
\(\Leftrightarrow1=\left(a-b\right)\left(a+b+\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{1}{b}+1\right)\circledast\)
VP của \(\circledast\Leftrightarrow a^2+ab+\dfrac{a^2}{b}+b+\dfrac{a}{b}+a-ab-b^2-a-\dfrac{b^2}{a}-1-b=a^2-b^2+\dfrac{a^2}{b}-\dfrac{b^2}{a}+\dfrac{a}{b}-1\)
Do : \(a^2=2;b^3=2;\dfrac{a^2}{b}=\dfrac{2}{b}=b^2;\dfrac{a}{b}=\dfrac{b^2}{a}\)
\(\Rightarrow2-\dfrac{2}{b}+\dfrac{2}{b}-\dfrac{a}{b}+\dfrac{a}{b}-1=1=VT\)
=> đpcm