Gọi thương của phép chia 4x3+ax+b và x-2 là A(x)
\(\Rightarrow4x^{3^{ }}+ax+b=\left(x-2\right).A\left(x\right)\)
Vì đẳng thức luôn đúng với mọi x nên ta thay x =2 vào ta được
\(\Rightarrow32+2a+b=0\)
⇒ 2a + b = -32
Gọi thương của phép chia 4x3+ax+b và x+1 là B(x)
\(\Rightarrow4x^{3^{ }}+ax+b=\left(x+1\right).B\left(x\right)\)
Vì đẳng thức luôn đúng với mọi x nên ta thay x =-1 vào ta được
\(\Rightarrow-4-a+b=0\)
\(\Rightarrow-a+b=4\)
Có \(\left[{}\begin{matrix}2a+b=-32\\-a+b=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=-12\\b=-8\end{matrix}\right.\)
⇒ 2a - 3b
= 2.(-12) - 3 .(-8)
= 0