Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
TTN Béo *8a1*

Đa thức f(x)=4x3+ax+b chia hết cho các đa thức x-2;x+1.Tính 2a-3b

Hàn Vũ
14 tháng 11 2017 lúc 20:47

Gọi thương của phép chia 4x3+ax+b và x-2 là A(x)

\(\Rightarrow4x^{3^{ }}+ax+b=\left(x-2\right).A\left(x\right)\)

Vì đẳng thức luôn đúng với mọi x nên ta thay x =2 vào ta được

\(\Rightarrow32+2a+b=0\)

⇒ 2a + b = -32

Gọi thương của phép chia 4x3+ax+b và x+1 là B(x)

\(\Rightarrow4x^{3^{ }}+ax+b=\left(x+1\right).B\left(x\right)\)

Vì đẳng thức luôn đúng với mọi x nên ta thay x =-1 vào ta được

\(\Rightarrow-4-a+b=0\)

\(\Rightarrow-a+b=4\)

\(\left[{}\begin{matrix}2a+b=-32\\-a+b=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=-12\\b=-8\end{matrix}\right.\)

⇒ 2a - 3b

= 2.(-12) - 3 .(-8)

= 0


Các câu hỏi tương tự
Sherlook Holmes
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Quỳnh Nguyễn
Xem chi tiết
Ẩn Danh
Xem chi tiết
TTN Béo *8a1*
Xem chi tiết