[CUỘC THI TRÍ TUỆ VICE]
Xem thêm tại: Cuộc thi Trí tuệ VICE | Facebook (2,2k like)
*Trả lời đúng và hay sẽ được nhận 1-2GP/câu trả lời nha ^^
-----------------------------------------------------------
[Toán.C543 _ 27.3.2021]
[Toán.C544 _ 27.3.2021]
[Toán.C545 _ 27.3.2021]
C.544. Thiếu điều kiện a;b;c dương
\(a+b+c=3\Rightarrow ab+bc+ca\le3\)
\(\Rightarrow\sum\dfrac{ab}{\sqrt{c^2+3}}\le\sum\dfrac{ab}{\sqrt{c^2+ab+bc+ca}}=\sum\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(\le\dfrac{1}{2}\sum\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)=\dfrac{1}{2}\left(a+b+c\right)=\dfrac{3}{2}\)
Ủa còn phần: \(\sum\dfrac{b^2c}{a^3\left(b+c\right)}\ge\dfrac{1}{2}\left(a+b+c\right)\) nó là C544 hay C545 vậy anh?
Nếu là C545 riêng thì đề bài sai, hai vế của BĐT không đồng bậc
C545 bị sai đề nên mình sửa luôn, nếu không phải thì thôi...
\(\Sigma\dfrac{b^2c}{a^3\left(b+c\right)}\ge\dfrac{1}{2}\Sigma\left(\dfrac{1}{a}\right)\) \(\forall a,b,c>0\)
Giải:
Xét \(\dfrac{b^2c}{a^3\left(b+c\right)}=\dfrac{1}{\dfrac{a^3}{b^2c}\left(b+c\right)}=\dfrac{1}{\dfrac{a^3}{b}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)}=\dfrac{\dfrac{1}{a^3}}{\dfrac{1}{b}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)}\)
Đặt \(\left(x;y;z\right)\rightarrow\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\)
\(\dfrac{b^2c}{a^3\left(b+c\right)}=\dfrac{x^3}{y\left(y+z\right)}\)
Khi đó ta chỉ cần chứng minh \(\Sigma\dfrac{x^3}{y\left(y+z\right)}\ge\dfrac{1}{2}\left(x+y+z\right)\)
Áp dụng BĐT Cauchy:
\(\dfrac{x^3}{y\left(y+z\right)}+\dfrac{y}{2}+\dfrac{y+z}{4}\ge3\sqrt[3]{\dfrac{x^3\cdot y\left(y+z\right)}{8y\left(y+z\right)}}=\dfrac{3x}{2}\)
\(\Leftrightarrow\dfrac{x^3}{y\left(y+z\right)}\ge\dfrac{3x}{2}-\dfrac{3y}{4}-\dfrac{z}{4}\)
\(\Rightarrow\Sigma\dfrac{x^3}{y\left(y+z\right)}\ge\dfrac{3}{2}\left(x+y+z\right)-\dfrac{3}{4}\left(x+y+z\right)-\dfrac{1}{4}\left(x+y+z\right)=\dfrac{1}{2}\left(x+y+z\right)\)
Ta có đpcm.
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\Leftrightarrow a=b=c>0\)
\(\Sigma\dfrac{b^2c}{a^3\left(b+c\right)}Min\)
\(\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{b+c}{4bc}+\dfrac{1}{2b}\ge3\sqrt[3]{..}=\dfrac{3}{2a}\)
\(\Sigma\dfrac{b^2c}{a^3\left(b+c\right)}\ge\dfrac{3}{2a}-\dfrac{3}{4b}-\dfrac{1}{4c}\ge\left(\dfrac{3}{2}-\dfrac{3}{4}-\dfrac{1}{4}\right)\left(a+b+c\right)=\dfrac{1}{2}\left(a+b+c\right)\)
Đề đúng nhé 2 idol bên dưới nó chả sai đâu nhưng mấy idol nghĩ cao quá nên nó v mong mấy idol nghĩ thấp hộ