Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

[CUỘC THI TRÍ TUỆ VICE]

Xem thêm tại: Cuộc thi Trí tuệ VICE | Facebook, đừng quên đóng góp 1 like cho trang nha!

*1 câu trả lời hay sẽ được tặng 1-2GP/câu trả lời. Hãy thử sức với những bài sau nhé!

-----------------------------------------------------------

[Toán.C670-674 _ 2.4.2021]

undefined

[Toán.C675-679 _ 2.4.2021]

undefinedundefinedundefinedundefinedundefined

𝓓𝓾𝔂 𝓐𝓷𝓱
2 tháng 4 2021 lúc 22:14

Câu 1: 

PT \(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

 Vậy \(S=\left\{2;3\right\}\)

Câu 2:

a) HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+4y=10\\3x+4y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{5-x}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=5\end{matrix}\right.\)

 Vậy \(\left(x;y\right)=\left(-5;5\right)\)

b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\y=2x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

 Vậy \(\left(x;y\right)=\left(2;-3\right)\)

HT2k02
2 tháng 4 2021 lúc 23:07

Câu 5:

Đặt \(P=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{1}{2xy}\)

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta có:

\(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{4}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\)

Áp dụng bất đẳng thức Cosi ta có:

\(2xy\le\dfrac{\left(x+y\right)^2}{2}\le\dfrac{1}{2}\Rightarrow\dfrac{1}{2xy}\ge2\)

\(\Rightarrow P\ge6\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

ntkhai0708
3 tháng 4 2021 lúc 16:56

Có $\dfrac{a^2}{5a^2+(b+c)^2}=\dfrac{1}{9}.\dfrac{9a^2}{a^2+b^2+c^2+2a(2a+bc)}$

Áp dụng Cauchy-Schwarz có:

$\dfrac{a^2}{a^2+b^2+c^2}+\dfrac{4a^2}{2a(2a+bc)} \geq \dfrac{9a^2}{a^2+b^2+c^2+2a(2a+bc)}$

Nên $\dfrac{a^2}{5a^2+(b+c)^2} \leq \dfrac{1}{9}.(\dfrac{a^2}{a^2+b^2+c^2}+\dfrac{2a}{2a+bc})$

Tương tự $\dfrac{b^2}{5b^2+(a+c)^2} \leq \dfrac{1}{9}.(\dfrac{b^2}{a^2+b^2+c^2}+\dfrac{2b}{2b+ac})$

 $\dfrac{c^2}{5c^2+(a+b)^2} \leq \dfrac{1}{9}.(\dfrac{c^2}{a^2+b^2+c^2}+\dfrac{2c}{2c+ab})$

Nên $\dfrac{a^2}{5a^2+(b+c)^2}+\dfrac{b^2}{5b^2+(a+c)^2} +\dfrac{c^2}{5c^2+(a+b)^2} \leq \dfrac{1}{9}.(1+3-(\dfrac{bc}{2a+bc}+\dfrac{ca}{2b+ac}+\dfrac{ab}{2c+ab}))$

Áp dụng Cauchy Schwarz có:

$\dfrac{bc}{2a+bc}+\dfrac{ca}{2b+ac}+\dfrac{ab}{2c+ab} \geq \dfrac{(ab+bc+ca)^2}{(ab)^2+(bc)^2+(ca)^2+2a^2bc+2ab^2c+2abc^2}=\dfrac{(ab+bc+ca)^2}{(ab+bc+ca)^2}=1$

Nên $\dfrac{a^2}{5a^2+(b+c)^2}+\dfrac{b^2}{5b^2+(a+c)^2} +\dfrac{c^2}{5c^2+(a+b)^2} \leq \dfrac{1}{9}.(1+3-1)=\dfrac{1}{3}$

Dấu $=$ xảy ra khi $a=b=c$


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết