Xét hàm \(f\left(x\right)=x^5-5x^3-20x+m\)
\(f'\left(x\right)=5x^4-15x^2-20=0\) có 2 nghiệm
\(\Rightarrow f\left(x\right)\) có 2 cực trị
\(\Rightarrow y=\left|f\left(x\right)\right|\) có 5 cực trị khi \(x^5-5x^3-20x+m=0\) có 3 nghiệm bội lẻ
Từ BBT ta thấy \(y=-m\) cắt \(y=x^5-5x^3-20x\) tại 3 điểm pb khi và chỉ khi:
\(-48\le-m\le48\Rightarrow-48\le m\le48\)
\(\Rightarrow\) Có 97 giá trị nguyên của m