Lưu ý rằng \(x^2+2>0\) với mọi x, do đó \(x^2+2=\left|x^2+2\right|\):
\(y=\left(x^2+2\right)\left|x^2-m\right|=\left|\left(x^2+2\right)\left(x^2-m\right)\right|\)
Tới đây là 1 bài biện luận cực trị của hàm trị tuyệt đối trùng phương khá cơ bản:
\(g\left(x\right)=\left(x^2+2\right)\left(x^2-m\right)=x^4-\left(m-2\right)x^2-2m\)
\(g'\left(x\right)=4x^3-2\left(m-2\right)x=0\Rightarrow\left[{}\begin{matrix}x=0\\x^2=\dfrac{m-2}{2}\end{matrix}\right.\)
Do \(g\left(x\right)=0\Leftrightarrow\left(x^2+2\right)\left(x^2-m\right)=0\Leftrightarrow x^2=m\) có tối đa 2 nghiệm
Đồng thời \(g'\left(x\right)=0\) có tối đa 3 nghiệm
\(\Rightarrow\) Hàm có 5 cực trị khi và chỉ khi \(g\left(x\right)=0\) có 2 nghiệm pb đồng thời \(g'\left(x\right)=0\) có 3 nghiệm pb và các nghiệm này ko trùng nhau
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\dfrac{m-2}{2}>0\\m\ne\dfrac{m-2}{2}\end{matrix}\right.\) \(\Leftrightarrow m>2\)
Câu 36:
Hàm \(g\left(x\right)=f\left(x\right)+m\) luôn cùng số cực trị với \(f\left(x\right)\Rightarrow g\left(x\right)\) luôn có 2 cực trị
Do đó hàm \(\left|g\left(x\right)\right|\) có đúng 3 cực trị khi và chỉ khi \(g\left(x\right)=0\) có đúng 1 nghiệm bội lẻ
\(\Leftrightarrow f\left(x\right)=-m\) có đúng 1 nghiệm bội lẻ
Nhìn đồ thị hàm số, ta thấy \(y=-m\) cắt \(y=f\left(x\right)\) tại đúng 1 điểm khi và chỉ khi: \(\left[{}\begin{matrix}-m>3\\-m< -1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\)