\(x^2-xy+y^2=x^2-2.x.\frac{1}{2}y+\frac{1}{4}y^2+\frac{3}{4}y^2=\left(x-\frac{1}{2}y\right)^2+\frac{3}{4}y^2\)
mà \(\left(x-\frac{1}{2}y\right)^2\ge0\forall x\) (1)
\(y^2\ge0\forall y\) (2)
(1),(2)=>\(\left(x-\frac{1}{2}y\right)^2+\frac{3}{4}y^2\ge\frac{3}{4}\forall x,y\)