Lời giải:
$xy+yz+xz=3xyz$
$\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3$
Đặt $\left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right)=(a,b,c)$ thì bài toán trở thành:
Cho $a,b,c>0$ thỏa mãn $a+b+c=3$. CMR $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq a^2+b^2+c^2$
---------------------------------
Thật vậy:
Áp dụng BĐT AM-GM ta có:
$\frac{1}{a^2}+\frac{1}{b^2}\geq \frac{2}{ab}$
$\frac{1}{b^2}+\frac{1}{c^2}\geq \frac{2}{bc}$
$\frac{1}{c^2}+\frac{1}{a^2}\geq \frac{2}{ac}$
Cộng theo vế và thu gọn: $\sum \frac{1}{a^2}\geq \sum \frac{1}{ab}=\frac{a+b+c}{abc}=\frac{3}{abc}$
Ta cần chứng minh $\frac{3}{abc}\geq a^2+b^2+c^2$ thì bài toán sẽ được chứng minh.
$\Leftrightarrow abc(a^2+b^2+c^2)\leq 3(*)$
Theo hệ quả BĐT AM-GM: $3abc=abc(a+b+c)\leq \frac{(ab+bc+ac)^2}{3}$
$\Rightarrow abc\leq \frac{(ab+bc+ac)^2}{9}$
$\Rightarrow abc(a^2+b^2+c^2)\leq \frac{(a^2+b^2+c^2)(ab+bc+ac)^2}{9}$
Mà:
$(a^2+b^2+c^2)(ab+bc+ac)^2\leq \left(\frac{a^2+b^2+c^2+ab+bc+ac+ab+bc+ac}{3}\right)^3=\frac{(a+b+c)^6}{27}=27$ theo AM-GM
Do đó: $abc(a^2+b^2+c^2)\leq \frac{27}{9}=3$. BĐT $(*)$ được CM
Do đó ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$ hay $x=y=z=1$