CMR x2+x-1 không chia hết cho 25 với mọi số nguyên a
cho n là số nguyên dương lẻ, CMR \(1+2^n+3^n+4^n+5^n\) chia hết cho 15
cho M=a+3a+1 với a là số nguyên dương
1,CMR mọi ước của M đều là số lẻ
2,Tìm a sao cho M chia hết cho 5.Với những giá trị nào của a thì M là lũy thừa của 5
CMR với mọi số nguyên n thì \(n^3+3n^2+2018n\) chia hết cho 6
Chứng minh rằng A=\(2^{2^n}+4^n+16\)chia hết cho 3 với mọi số nguyên dương n
cho a,b là số nguyên dương lớn hơn 1. giả sử a^1945 +b^1945 và a^1954 +b^1954 đều chia hết cho 2001. cmr a,b đều chia hết cho 2001
Cho n là số nguyên dương. Chứng minh rằng:
\(A=2^{3n-1}+2^{3n+1}+1 \) chia hết cho 7
Câu 2:
a) Giải phương trình:2x^2+x+3=3x căn(x+3)
b) Chứng minh rằng abc(a^3-b^3)(b^3-c^3)(c^3-a^3) chia hết cho 7 với mọi số nguyên a,b,c.
Câu 3: Cho hai số dương a,b thỏa mãn điều kiện a+b<=1. Chứng minh rằng:a^2-3/(4a)-a/b<=-9/4)
1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.