a) Vì 2 vế ko âm nên bình phương cả 2 vế ta dc :
\(\left|x+y\right|^2\le\left|x\right|^2+\left|y\right|^2\)
\(\Rightarrow\left(x+y\right).\left(x+y\right)\le\left(\left|x\right|+\left|y\right|\right)\left(\left|x\right|+\left|y\right|\right)\)
\(\Rightarrow x^2+2xy+y^2\le x^2+2\left|x\right|\left|y\right|+y^2\)
\(\Rightarrow xy\le\left|xy\right|\) (Luôn đúng với mọi \(x,y\))
Vậy bất đẳng thức trên đúng. Dấu "=" xảy ra khi \(\left|xy\right|=xy\) \(\Leftrightarrow x,y\) cùng dấu
Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|\rightarrowđpcm\)
b) Áp dụng câu a ta có :
\(\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\Rightarrow\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
Vậy \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\rightarrowđpcm\)