\(6^{2n}=36^n;36\equiv2\left(mod17\right)\Rightarrow6^{2n}\equiv2^n\left(mod17\right)\)
\(19\equiv2\left(mod17\right)\Rightarrow19^n\equiv2^n\left(mod17\right)\)
\(2^{n+1}\equiv2^{n+1}\left(mod17\right)\)
\(\Rightarrow6^{2n}+19^n-2^{n+1}\equiv2^n+2^n-2^{n+1}\equiv2^{n+1}-2^{n+1}\equiv0\left(mod17\right)\)
\(\Rightarrow6^{2n}+19^n-2^{n+1}⋮17\forall n\in N\)