Ta có:
\(\Delta=\left[-\left(2m-1\right)\right]^2-4.1.\left(2m-4\right)\\
=\left(2m-1\right)^2-4\left(2m-4\right)\\
=4m^2-4m+1-8m+16\\
=4m^2-12m+17\\
=4m^2-12m+9+8\\
=\left(2m-3\right)^2+8>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Theo Vi-ét: \(x_1+x_2=2m-1;x_1x_2=2m-4\)
\(A=x_1^2+x_2^2\\ =\left(x_1+x_2\right)^2-2x_1x_2\\ =\left(2m-1\right)^2-2\left(2m-4\right)\\ =4m^2-4m+1-4m+8\\ =4m^2-8m+9\\ =4m^2-8m+4+1\\ =\left(2m-2\right)^2+1\ge1\)
Dấu "=" xảy ra `<=> m=1`
Vậy `A_(min) = 1 <=> m=1`