Đặt
\(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+................+\dfrac{1}{100^2}\)
\(S< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...........\dfrac{1}{99.100}\)
\(S< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{99}-\dfrac{1}{100}\)
\(S< 1-\dfrac{1}{100}\)
\(\Leftrightarrow S< 1\left(đpcm\right)\)
Đề sai hả bạn,phải là CMR:\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+........................+\dfrac{1}{100^2}< 1\)
Tham khảo: Câu hỏi của Đinh Nguyễn Nguyệt Hà - Toán lớp 6 - Học toán với OnlineMath
ở câu hỏi tt đầy ra mà sao k chịu tìm vậy hả
Sửa đề:
122+133+.............+11002<1" id="MathJax-Element-1-Frame" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 22.5px; letter-spacing: normal; word-wrap: normal; word-spacing: normal; white-space: nowrap; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;" tabindex="0">
Làm bài:
Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{4}\)
\(\dfrac{1}{3^3}< \dfrac{1}{2.3}\)
...................
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{100}\)
\(\Rightarrow A< \dfrac{1}{4}< \dfrac{3}{4}\)
\(\Rightarrow A< \dfrac{3}{4}\)
P/s:Bạn chép sai đề rồi nhea để mình sủa lại đề cho đúng nha!!!
Chứng minh rằng :
\(\dfrac{1}{2^2}+\dfrac{1}{3^3}+...+\dfrac{1}{100^2}\)
Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
...
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
= \(\dfrac{1}{2^2}+\dfrac{1}{3^2} +...+\dfrac{1}{100}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=\(\dfrac{1}{2^2}+\dfrac{1}{3^3}+...+\dfrac{1}{100^2}< 1-\dfrac{1}{100}\)
=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{99}{100}< 1\)
=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1\)
Vậy \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1\)