2P=\(\dfrac{2}{2}+\dfrac{2}{2^2}+...+\dfrac{2}{2^{100}}\)
2P=\(1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}\)
2P-P=\(\dfrac{1}{2}-\dfrac{1}{2^{100}}\)
P=\(\dfrac{1}{2}-\dfrac{1}{2^{100}}\)
\(P=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\)
\(2P=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\)\(\)
\(2P-P=1-\dfrac{1}{2^{100}}\)
\(P=\dfrac{2^{100}}{2^{100}}-\dfrac{1}{2^{100}}\)
\(P=\dfrac{2^{100}-1}{2^{100}}\)