Nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0, nên nếu ta chứng minh được giá trị của đa thức luôn > 0 hoặc luôn < 0 (không có = 0) với mọi giá trị của biến thì đa thức đó vô nghiệm.
Ta có : x² + x + 1
= x² + x + 4/4
= x² + x + 1/4 + 3/4
= (x² + x + 1/4) + 3/4
= (x² + 2.x.(1/2) + (1/2)² ) + 3/4
= (x + 1/2)² + 3/4
Do (x + 1/2) ≥ 0 ∀ x ∈ R
=> (x + 1/2)² + 3/4 ≥ 3/4 > 0 ∀ x ∈ R
=> x² + x + 1 > 0 ∀ x ∈ R
=> Đpcm
Ta có x² + x + 1
= x² + x + 4/4
= x² + x + 1/4 + 3/4
= (x² + x + 1/4) + 3/4
= (x² + 2.x.(1/2) + (1/2)² ) + 3/4
= (x + 1/2)² + 3/4
Do (x + 1/2) ≥ 0 ∀ x ∈ R
=> (x + 1/2)² + 3/4 ≥ 3/4 > 0 ∀ x ∈ R
=> x² + x + 1 > 0 ∀ x ∈ R
=> đpcm
\(x^2+x+1=x^2.2.\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2>0\)
\(\Rightarrow x^2+x+1\) vô nghiệm (ĐPCM)
\(x^2+x+1\\ =x^2+2x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^2+1\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\\ \Rightarrow\left(đpcm\right)\)