\(a^3+b^3+abc\ge ab\left(a+b+c\right)\)
\(\Rightarrow a^3+b^3+abc\ge a^2b+b^2a+abc\)
\(\Rightarrow a^3+b^3\ge a^2b+b^2a\)
\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\)