\(4x^2-x+1=\left(2x\right)^2-2.\frac{1}{4}.2x+\frac{1}{16}+\frac{15}{16}=\left(2x-\frac{1}{4}\right)^2+\frac{15}{16}>0\)
\(-3x^2+x-1=-3\left(x^2-2.\frac{1}{6}.x+\frac{1}{36}\right)-\frac{11}{12}=-3\left(x-\frac{1}{6}\right)^2-\frac{11}{12}< 0\)
\(4x^2-x+1=\left(2x\right)^2-2.\frac{1}{4}.2x+\frac{1}{16}+\frac{15}{16}=\left(2x-\frac{1}{4}\right)^2+\frac{15}{16}>0\)
\(-3x^2+x-1=-3\left(x^2-2.\frac{1}{6}.x+\frac{1}{36}\right)-\frac{11}{12}=-3\left(x-\frac{1}{6}\right)^2-\frac{11}{12}< 0\)
Bài 1:Thực hiện các phép tính
a. (x5 +4x3 - 6x2):4x2
b. (x3 +x2-12) : (x-2)
c. (-2x5+3x2-4x3):2x2
d. (x3 - 64):(x2 + 4x + 16)
Bài 2:Rút gọn biểu thức
a. 3x (x - 2)- 5x (1 - x) - 8(x2 - 3)
b.(x - y) (x2 + xy + y2)+2y3
c. (x - y)2 + (x+y)2 - 2(x-y) (x+y)
toàn bộ dùng bất đẳng thức svac-xơ hoặc bunhiacopski
bài 1: cho x,y,z>0. CMR:
a,1/x+1/y>=4/x+y
b,1/x+1/y+1/z>=9/x+y+z
bài 2: cho a,b,c>0. CMR:
a,a^2/(b+c)+b^2/(c+a)+c^2/(a+b)>=(a+b+c)/2
b, a^2/(2b+5c)+b^2/(2c+5a)+c^2/(2a+5b)>=(a+b+c)/7
bài 3: cho a,b,c>0. CMR a/(b+c)+b/(c+a)+c/(b+a)>=3/2
bài 4: cho a,b,c>0. CMR:
1/(b+2c)+b/(c+2a)+c/(a+2b)>=1
bài 5: cho a+b+c=1. Tìm min
a, P=1/a+4/b+9/c
b, Q+a^2/(b+3c)+b^2/(c+3a)+c^2/(a+3b)
bài 6: cho 3x^2+5y^2=3/79
tìm max, min A=x+4y
bài 7: tìm min P,Q,R
a, P=1/x+1/x;x>0
b, Q=x+1/x;x>=3
c, R=1/x+4/(1-x);0<x<1
bài 8: cho a,b,c là 3 cạnh một tam giác. CMR
a, a/(b+c-a)+b/(c+a-b)+c/(a+b-c)>=3
b, tìm min P
P=a/(b+c-a)+4b/(c+a-b)+9c/(a+b-c)
Cho biểu thức A = \(\dfrac{x}{x+1}-\dfrac{3-3x}{x^2-x+1}+\dfrac{x+4}{x^3+1}\left(x\ne-1\right)\)
a, Rút gọn biểu thức A
b, CMR \(A>0\forall x\ne-1\)
c, Với x > 0. Tính GTLN của A
Cho a+b+c=0, x+y+z=0, a/x+b/y+c/z=0. CMR: \(ax^2+by^2+cz^2=0\)
a ,Tính \(A=\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(y-z\right)\left(z-x\right)}+\dfrac{1}{\left(z-x\right)\left(x-y\right)}\)
b, Cho a,b,c \(\ne\) 0 thỏa mãn a+b+c=0
CMR: \(M=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=0\)
c, Cho biểu thức :
\(B=\dfrac{y}{\left(x-y\right)\left(y-z\right)}+\dfrac{z}{\left(y-z\right)\left(z-x\right)}+\dfrac{x}{\left(z-x\right)\left(x-y\right)}\)
CMR : Giá trị bth B không phụ thuộc vào giá trị của biến
Cho $f(x)=ax^2+bx+c>0$ với mọi $x$ và $a,b,c>0; b\neq 1$
CMR:
$\frac{3350a+1340c+4ac+2b+1}{b}>2014$
Giúp mình với ạ !
x3+4x2+x-6=0
a) CMR: Nếu \(a^3+b^3+c^3=3abc\) thì \(a=b=c\) hoặc \(a+b+c=0\)
b) CMR: Nếu \(x+y-2=0\) thì giá trị của đa thức \(x^3+x^2y-2x^2-xy-y^2+3y+x-1\) là hằng số
Bài 1: CMR:
\(\)a, \(x^2+y^2+1\ge xy+x+y\) với mọi x,y
b, \(x^2-x+1>0\) với mọi x