a) Ta có: \(VP=a^4-b^4\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)\)
\(=\left(a+b\right)\left(a-b\right)\left(a^2+b^2\right)\)
\(=\left(a+b\right)\left(a^3+ab^2-a^2b-b^3\right)\)
\(=VT\)(đpcm)
b) Ta có: \(VT=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=\left(a+b\right)\left(a^2+2ab+b^2-3ab\right)\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
\(=a^3+b^3=VP\)(đpcm)