Đặt \(\left\{{}\begin{matrix}a=x\\b=2y\\c=3z\end{matrix}\right.\) ta cần chứng minh
\(x^4+2y^4+3z^4\ge6\left(\dfrac{x+2y+3z}{6}\right)^4\)
Ta có:
\(x^4+2y^4+3z^4\ge\dfrac{\left(x^2+2y^2+3z^2\right)^2}{6}\ge\dfrac{1}{6}.\dfrac{\left(x+2y+3z\right)^4}{6^2}=6\left(\dfrac{x+2y+3z}{6}\right)^4\)