Tính các tích sau:
P\(_1\) =\(\left(1+\dfrac{2}{4}\right)\left(1+\dfrac{2}{10}\right)\left(1+\dfrac{2}{18}\right)....\left(1+\dfrac{2}{n^2+3n}\right)\)
P\(_2\) =\(\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)....\left(1+\dfrac{2}{n^2+2n}\right)\)
P\(_3\) = \(\left(1-\dfrac{1}{1+2}\right)\left(1-\dfrac{1}{1+2+3}\right)\left(1-\dfrac{1}{1+2+3+4}\right).....\left(1-\dfrac{1}{1+2+3+4+...+n}\right)\)
P\(_4\) = \(\dfrac{2^4+4}{4^4+4}.\dfrac{6^4+4}{8^4+4}.\dfrac{8^4+4}{10^4+4}....\dfrac{18^4+4}{20^4+4}\)