Tính \(\left(100+\dfrac{99}{2}+\dfrac{98}{3}+... +\dfrac{2}{99}+\dfrac{1}{100}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{101}\right)-2\)
Tính giá trị của biểu thức:
\(A=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+....+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.99}+....+\dfrac{1}{97.3}+\dfrac{1}{99.1}}\)
\(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{99}+\dfrac{1}{100}}{\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+....+\dfrac{1}{99}}\)
Chứng minh: \(A=\dfrac{2^3+1}{2^3-1}.\dfrac{3^3+1}{3^3-1}.\dfrac{4^3+1}{4^3-1}....\dfrac{9^3+1}{9^3-1}< \dfrac{3}{2}\)
\(B=\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+....+\dfrac{1}{n!}< 1\)
\(C=\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+....+\dfrac{n-1}{n!}< 1\)
D=\(\left(1-\dfrac{2}{6}\right)\left(1-\dfrac{2}{12}\right)\left(1-\dfrac{2}{20}\right)....\left(1-\dfrac{2}{n\left(n+1\right)}\right)>\dfrac{1}{3}\)
Tính các tích sau:
P\(_1\) =\(\left(1+\dfrac{2}{4}\right)\left(1+\dfrac{2}{10}\right)\left(1+\dfrac{2}{18}\right)....\left(1+\dfrac{2}{n^2+3n}\right)\)
P\(_2\) =\(\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)....\left(1+\dfrac{2}{n^2+2n}\right)\)
P\(_3\) = \(\left(1-\dfrac{1}{1+2}\right)\left(1-\dfrac{1}{1+2+3}\right)\left(1-\dfrac{1}{1+2+3+4}\right).....\left(1-\dfrac{1}{1+2+3+4+...+n}\right)\)
P\(_4\) = \(\dfrac{2^4+4}{4^4+4}.\dfrac{6^4+4}{8^4+4}.\dfrac{8^4+4}{10^4+4}....\dfrac{18^4+4}{20^4+4}\)
a,Rút gọn :
\(A=\dfrac{\left(1+\dfrac{1}{4}\right)\left(3^4+\dfrac{1}{4}\right)\left(5^4+\dfrac{1}{4}\right)...\left(51^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right)\left(4^4+\dfrac{1}{4}\right)\left(6^4+\dfrac{1}{4}\right)...\left(52^4+\dfrac{1}{4}\right)}\)
b, Tìm nghiệm nguyên: \(4x^2-8y^3+2z^2+4x-4=0\)
Rút gọn: \(A=\dfrac{\left(1+\dfrac{1}{4}\right)\left(3^4+\dfrac{1}{4}\right)\left(5^4+\dfrac{1}{4}\right)...\left(51^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right)\left(4^4+\dfrac{1}{4}\right)\left(6^4+\dfrac{1}{4}\right)...\left(52^4+\dfrac{1}{4}\right)}\)
Tính các tổng sau:
A=\(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+.....+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
B=\(\dfrac{1}{1.3.5}+\dfrac{1}{3.5.7}+\dfrac{1}{5.7.9}+....+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)\left(2n+3\right)}\)
C=\(\sqrt{1+\dfrac{1}{1^2}+\dfrac{1}{2^2}}+\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+....+\sqrt{1+\dfrac{1}{2018^2}+\dfrac{1}{2019^2}}\)
cho a,b,c>0, CMR:
\(\left(a+b+\dfrac{1}{4}\right)^2+\left(b+c+\dfrac{1}{4}\right)^2+\left(c+a+\dfrac{1}{4}\right)^2\ge4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\right)\)
Cho x, y, z là các số thoả mãn:
\(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{12}-\dfrac{z}{4}=1\\\dfrac{x}{10}+\dfrac{y}{5}+\dfrac{z}{3}=1\end{matrix}\right.\)
Tính \(M=x^{10}+y^{100}+z^{1000}\)