Bài 1 Cho y, x là 2 đại lượng tỉ lệ thuận. Biết hai giá trị tương ứng x1; x2 của x có tổng là -1 hai giá trị tương ứng y1; y2 của y có tổng là 4
a/ Hãy biểu diễn y theo x
b/ Tính giá trị của y khi x =-1; 0,5
c/ Tính giá trị của x khi y =-12; \(\dfrac{4}{3}\)
Nếu \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\left(1\right)\)
Trong đó a, b, c là các số khác nhau và khác 0 thì: \(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)(*)
biet \(\dfrac{b\cdot z-x\cdot y}{a}=\dfrac{c\cdot x-a\cdot z}{b}=\dfrac{a\cdot y-b\cdot x}{c}\)
CM , \(\dfrac{a}{b}=\dfrac{b}{y}=\dfrac{c}{z}\)
a,b khác 0, a/20=b/21. Vậy nó thuộc tỉ lệ thức nào?
\(Cho TLT:\dfrac{x+y}{x-y}=\dfrac{x+z}{x-z}(x khác cộng trừ z, z khác 0, x khác 0) Tính M=\dfrac{2019(y)^{2}+2020yz+2021(z)^{2}}{{2020(y)^{2}+2021yz+2022(z)^{2}} \)
1. Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) và a + b + c khác 0 biết a = 2018 . Tìm b và c
2. Cho x , y , z thỏa mãn \(\dfrac{x+y+1}{x}=\dfrac{x+y+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\) . Tìm x , y ,z
) A=1/117 x [4+(1/119)] - [1+(116/117)] x[5+(118/119)]-(5/119)
b)B= [1-(z/x)] x [1-(x/y)] x [1+(y/z)] ;x,z,y khác 0;x-y-z =0
2
a)/2x+5/-(x+1)=3
b)Tìm x thuộc N sao cho x lớn nhất thỏa mãn :2x2^2x2^3x...x2^x <2048
c) Cho tỉ lệ thức (3x+5y)/(x-2y)=1/4
3.Cho f(x)=ax^2+bx+c
a) Cho a=1,b=2,c=3 .Chứng minh f(x) ko có nghiệm
b)Biết 5a-b+2c=0.CMR:f(1)xf(-2)<hoặc=0
c)Cho a,b là các số tự nhiên khác 0.Biết 5/8<(1/a)+(1/b)<1.Tìm giá trị nhỏ nhất của a+b
tìm x,y thuộc Z biết:
a, \(\left(x+4\right)\left(y+3\right)=3\)
b,\(\left(x+2\right)\left(y-3\right)=-3\)
c,\(\dfrac{x+1}{2}=\dfrac{1}{y}\)
d, \(\dfrac{x-7}{-1}=\dfrac{13}{2-y}\)
a\(\frac{x}{5}=\frac{y}{3};x^2-y^2=4\) với x,y > 0
b)\(\frac{x}{y+z+1}=\frac{y}{x+z+1}\frac{z}{x+y-2}=x+y+z\)