Ta có 43\(^1\) = 43
43\(^2\) = \(\overline{.......9}\) (tận cùng là 9)
43\(^3\) = \(\overline{........7}\);
43\(^4\) = \(\overline{........1}\);
43\(^3\) = \(\overline{........3}\)
=>43\(^{4k}\) =\(\overline{........1}\)
43\(^{4k+1}\) = \(\overline{........3}\)
43\(^{4k+2}\)= \(\overline{.......9}\)
43\(^{4k+3}\) = \(\overline{........7}\)
Mà 43 = 4.10 + 3 => 43\(^{43}\) = 43\(^{4.10+3}\) =\(\overline{........7}\) (tận cùng là 7)
Tương tự ta có 17\(^{17}\) cũng có tận cùng là 7
⇒43\(^{43}\)- 17\(^{17}\) tận cùng là 0, chia hết cho 10