1/(n + 1) + 1/(n + 2) + ... + 1/(2n - 2) + 1/(2n - 1) + 1/(2n) > 13/24 (n ∈ N*)
Với n = 1, ta có : 1/2 + 1/3 + ... + 1/2 > 13/24 (đúng)
Giả sử bất đẳng thức đúng với n = k
Nghĩa là : 1/(k + 1) + 1/(k + 2) + ... + 1/(2k - 2) + 1/(2k - 1) + 1/(2k) > 13/24 (1)
Ta cần chứng minh bất đẳng thức đúng với n = k + 1
Nghĩa là : 1/(k + 2) +1/(k + 3) + ... + 1/(2k) + 1/(2k + 1) + 1/(2k + 2) > 13/24 (2)
<=> [1/(k + 1) + 1/(k + 2) + 1/(k + 3) + ... + 1/(2k)] + 1/(2k + 1) + 1/(2k + 2) - 1/(k + 1) > 13/24
Ta chứng minh : 1/(2k + 1) + 1/(2k + 2) - 1/(k + 1) > 0 (3)
<=> [2(k + 1) + (2k + 1) - 2(2k + 1)] / [2(2k + 1)(k + 1)] > 0
<=>1 / [2(2k + 1)(k + 1)] > 0 (4)
Vì k ∈ N* => [2(2k + 1)(k + 1)] > 0 => (4) đúng => (3) đúng
Cộng (1) và (3) được :
1/(k + 2) +1/(k + 3) + ... + 1/(2k) + 1/(2k + 1) + 1/(2k + 2) > 13/24
=> (2) đúng
Theo quy nạp => Điều cần chứng minh là đúng => đpcm
Làm cách thông dụng nhất là quy đồng .
Khai triển VT ta có :
\(1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}\)
\(=\dfrac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\dfrac{n^4+2n^3+n^2+n^2+2n+1+n^2}{n^2\left(n+1\right)^2}\)
\(=\dfrac{n^4+2n^3+3n^2+2n+1}{n^2\left(n+1\right)^2}\)
\(=\dfrac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}\)
Vậy đẳng thức đã được chứng minh :3