chứng tỏ rằng B = \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+....+\frac{n^2-1}{n^2}\) không phải là số tự nhiên với mọi số tự nhiên n , n >2
Chứng minh rằng:
\(3^{n+1}-2^{n+1}+\) \(3^{n-1}-2^{n-1}\) chia hết cho 10 với mọi số tự nhiên n >1
Chứng minh rằng : Với mọi n nguyên dương thì \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
Chứng tỏ rằng:
\(7^6+7^5-7^4⋮55\)
\(3^{n+2}-2^{n+2}+3^n-2^n⋮10\) ( với mọi số nguyên dương n )
\(43^{43}-17^{17}⋮10\)
\(8^7-2^{18}⋮14\)
\(23^{401}+38^{202}-2^{433}⋮5\)
chứng minh rằng với mọi số nguyên dương n thì
\(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
Chứng minh rằng: Với mọi số nguyên dương n thì: \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
Chứng minh rằng: Với mọi số nguyên dương n thì: \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
Chứng minh rằng với mọi số nguyên dương n thì 3n+2 - 2n+2 + 3n - 2n chia hết cho 10.
a) Tính
A=\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-2^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
b) Chứng tỏ với mọi số nguyên n thì:
\(3^{n-2}-2^{n+2}+3^n-2^n⋮10\)