Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Lê Việt Hoàng

Chứng tỏ

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)

Nguyễn Thanh Hằng
26 tháng 5 2017 lúc 18:29

Đặt :

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......................+\dfrac{1}{100^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

...........................

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+.....................+\dfrac{1}{99.100}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.......+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A< 1-\dfrac{1}{100}< 1\)

\(\Rightarrow A< 1\rightarrowđpcm\)

Nguyễn Lưu Vũ Quang
26 tháng 5 2017 lúc 19:32

Đặt \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

Ta có:

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3\cdot4}\)

.............................

\(\dfrac{1}{100^2}< \dfrac{1}{99\cdot100}\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)

\(\Rightarrow S< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow S< 1-\dfrac{1}{100}\)

\(\Rightarrow S< \dfrac{100}{100}-\dfrac{1}{100}\)

\(\Rightarrow S< \dfrac{99}{100}\)

\(\dfrac{99}{100}< 1\)

\(\Rightarrow S< 1\)

Vậy \(S< 1\).

Phạm Thanh Hằng
27 tháng 5 2017 lúc 7:39

Đặt:

A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\)

\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}\)

Ta thấy :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\)

\(\dfrac{1}{100.100}< \dfrac{1}{99.100}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

Nhận xét :

\(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};\)

\(...;\dfrac{1}{99.100}=\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\)

\(\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A=1-\dfrac{1}{100}< 1\)

\(\Rightarrow A< 1\)

Trần Thị Kim Chi
1 tháng 6 2017 lúc 15:06

Ta có: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)

=> \(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}< 1\)

Ta thấy: \(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}< 1\)

\(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}< 1\)

\(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}< \dfrac{1}{1}-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-...-\left(\dfrac{1}{99}-\dfrac{1}{99}\right)-\dfrac{1}{100}< 1\)

\(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}< \dfrac{1}{1}-0-0-0-...-0-\dfrac{1}{100}< 1\)

\(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}< \dfrac{1}{1}-\dfrac{1}{100}< 1\)

\(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}< \dfrac{99}{100}< 1\)

=> \(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}< 1\)

Vậy \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)


Các câu hỏi tương tự
Cuber Việt
Xem chi tiết
Tuyết Nhi Melody
Xem chi tiết
Nguyễn Kim Thành
Xem chi tiết
Nguyễn Thu Hà
Xem chi tiết
Trần Duy Quân
Xem chi tiết
Khánh Linh
Xem chi tiết
Hoàng Thị Xuân Mai
Xem chi tiết
Jenny Phạm
Xem chi tiết