Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=b.k;b=d.k\)
Ta có:
\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
\(+)\dfrac{a+b}{c+d}=\dfrac{b.k+b}{d.k+d}=\dfrac{b.\left(k+1\right)}{d.\left(k+1\right)}=\dfrac{b}{d}\left(1\right)\)
\(+)\dfrac{a-b}{c-d}=\dfrac{b.k-b}{d.k-d}=\dfrac{b.\left(k-1\right)}{d.\left(k-1\right)}=\dfrac{b}{d}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\left(đpcm\right)\)
Chúc bạn học tốt!
Từ tỷ lệ thức a/b = c/d
=> a+b / a-b = c+d / c-d
=>a/c = b/d = a+b/c+d = a-b/c-d
=> a+b/a-b = c+d/c-d (áp dụng dãy tỷ số bằng nhau)