Bài 8: Tính chất của dãy tỉ số bằng nhau

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d};\left(a-b\ne0;c-d\ne0\right)\) ta có thể suy ra tỉ lệ thức \(\dfrac{a+b}{c-b}=\dfrac{c+d}{c-d}\) ?

Lưu Hạ Vy
18 tháng 4 2017 lúc 14:46

Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\) suy ra \(\dfrac{a}{c}=\dfrac{b}{d}\)

Theo tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Suy ra: \(\dfrac{a+b}{a-c}=\dfrac{c+d}{c-d}\)


Thạch Nguyễn
11 tháng 7 2017 lúc 14:42

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk\)\(c=dk\)

Nên \(\dfrac{a+b}{c-d}=\dfrac{bk+b}{dk-d}=\dfrac{b\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\Rightarrow\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) (với \(a-b\ne0,c-d\ne0\))

Vậy \(\dfrac{a}{b}=\dfrac{c}{d}thì\)\(\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) ( \(a-b\ne0,c-d\ne0\))

Hải Đăng
13 tháng 10 2018 lúc 9:09

Giải bài 63 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7

Theo tính chất của dãy tỉ số bằng nhau ta có

Giải bài 63 trang 31 Toán 7 Tập 1 | Giải bài tập Toán 7


Các câu hỏi tương tự
Cô bé vui vẻ
Xem chi tiết
Nhữ Thanh Hà
Xem chi tiết
Vũ Minh Hằng
Xem chi tiết
Ngô Minh Đức
Xem chi tiết
vw_w_wv
Xem chi tiết
Viên Viên
Xem chi tiết
Phương Phương
Xem chi tiết
Tanya
Xem chi tiết
Mr. Master Volume
Xem chi tiết