Gọi UCLN(4m+8,2m+3) = d
\(\Rightarrow\) 4m+8 \(⋮\) d
2m+3 \(⋮\) d \(\Rightarrow\) 2(2m+3) \(⋮\) d \(\Rightarrow\) 4m+6 \(⋮\) d
\(\Rightarrow\)( 4m+8 ) - (4m+6 ) \(⋮\) d
hay 2 \(⋮\) d
\(\Rightarrow\) d \(\in\) U(2)
Mà U(2)=\(\left\{-2;-1;1;2\right\}\)
\(\Rightarrow\) d \(\in\left\{-2;-1;1;2\right\}\)
Mà 2m+3 là dạng số lẻ \(\Rightarrow\) 2m+3 \(⋮̸\) 2 \(\Rightarrow\) d\(\ne\) -2 và 2
\(\Rightarrow\) d = 1 ; -1
Vậy \(\dfrac{4m+8}{2m+3}\) là p/s tối giản với mọi m ( ĐPCM )
ta có:
gọi d là 1 ước chung của 4m+8 và 2m+3
vì 2m+3 chia hết cho d
=> 2.(2m+3) cũng chia hết cho d
=> 4m+6 chia hết cho d
=>4m+8-(4m+6) chia hết cho d
=>2 chia hết cho d
=> d\(\in\){-2;-1;1;2}
mà 2m+3 ko chia hết cho -2 hoặc 2
=> d chỉ có thể bằng 1hoặc -1
=>\(\dfrac{4m+8}{2m+3}\) là phân số tối giản