Bài 2: Nhân đa thức với đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quỳnh Như

Chứng minh rằng nếu S = a + b + c thì:
\(S\left(S-2b\right)S\left(S-2c\right)+S\left(S-2c\right)\left(S-2a\right)+S\left(S-2a\right)\left(S-2b\right)=\left(S-2a\right)\left(S-2b\right)\left(S-2c\right)+8abc\)

asuna
20 tháng 7 2017 lúc 11:13

Trả lời giúp bạn nè:
VT = S(S - 2b)(S -2c) + S(S-2c)(S - 2a) + S(S - 2a)(S - 2b)
= S((S - 2b)(S -2c) + (S-2c)(S - 2a) + (S - 2a)(S - 2b) )
= S ( S2 -2cS -2bS + 4bc + S2 - 2aS - 2cS +4ac + S2 -2bS -2aS +4ab )
= S ( 3S2 - 4cS -4bS - 4aS + 4bc + 4ac + 4ab)
= 3S3 - 4cS2 - 3bS2 - 4aS2 + 4bcS + 4acS + 4abS
= S3 + S3 + S3 - 4cS2 - 3bS2 - 4aS2 + 4bcS + 4acS + 4abS
= S2 (S -4c ) + S2 (S -4b ) + S2 (S -4a )
= S2 ( S -4c + S - 4b + S - 4a)
= S2 (3S - 4(c + b + a)
= S2 (3S - 4S)
= 3S3 - 4S3
= -S3 ( 1 )

VP = (S - 2a)(S - 2b)(S - 2c) + 8abc
= (S2 -2bS -2aS + 4ab)(S - 2c) + 8abc
= S3 - 2cS2 - 2bS2 + 4bcS - 2aS2 + 4acS + 4abS - 8abc + 8abc
= S3 - 2cS2 - 2bS2 - 2aS2 + 4bcS + 4acS + 4abS
= S2 (S -2c ) - S2 (2b + 2a )
= S2 ( S - 2c - 2b - 2a )
= S2 ( S - 2( c + b + a))
= S3 - 2S3
= -S3 ( 2 )
Từ (1) và (2) suy ra :
S(S - 2b)(S -2c) + S(S-2c)(S - 2a) + S(S - 2a)(S - 2b) = (S - 2a)(S - 2b)(S - 2c) + 8abc






Các câu hỏi tương tự
Huỳnh Như
Xem chi tiết
asuna
Xem chi tiết
Nam Trần
Xem chi tiết
Nguyen Thuy Linh
Xem chi tiết
Nguyễn Nhật Tiên Tiên
Xem chi tiết
Nguyễn Minh Bảo Anh
Xem chi tiết
Dương Thị Yến Nhi
Xem chi tiết
Vân⨳Ly
Xem chi tiết
Ngọc Nguyễn Hồng
Xem chi tiết