Phép nhân và phép chia các đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
___Vương Tuấn Khải___

Chứng minh rằng nếu \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) thì:

\(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

Nhã Doanh
27 tháng 5 2018 lúc 9:32

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{a}=\dfrac{y}{b}\\\dfrac{y}{b}=\dfrac{z}{c}\\\dfrac{x}{a}=\dfrac{z}{c}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ay=bx\\bz=cy\\az=cx\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ay-bx=0\\bz-cy=0\\az-cx=0\end{matrix}\right.\)

\(\Leftrightarrow\left(ax-by\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)

\(\Leftrightarrow\left(a^2x^2-2axby+b^2y^2\right)+\left(b^2z^2-2bzcy+c^2y^2\right)+\left(a^2z^2-2azcx+c^2x^2\right)=0\)

\(\Leftrightarrow a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2-\left(a^2x^2+b^2b^2+c^2y^2+2axby+2azcx+2bzcy\right)=0\)

\(\Leftrightarrow x^2\left(a^2+b^2+c^2\right)+y^2\left(a^2+b^2+c^2\right)+z^2\left(a^2+b^2+c^2\right)-\left(ax+ab+cz\right)^2=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)-\left(ax+by+cz\right)^2=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

Lê Thị Ngọc Duyên
27 tháng 5 2018 lúc 9:34

Ta có : \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\) ( theo bđt Bu-nhi-a Cop-xki )

Dấu "=" xảy ra khi \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)

Vậy nếu \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) thì \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

 Mashiro Shiina
27 tháng 5 2018 lúc 11:33

Áp dụng Bunyakovsky:

\(\left(ax+by+cz\right)^2\le\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)

Dấu "=" khi: \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) hay \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) thì thỏa mãn đẳng thức

p/s: Tham khảo,vì t biết lớp 8 chưa học Bunyakovsky,đúng ko Phùng Khánh Linh


Các câu hỏi tương tự
Loveduda
Xem chi tiết
Loveduda
Xem chi tiết
Nguyễn Thị Hằng
Xem chi tiết
Hoàng Chi
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Thái Đào
Xem chi tiết
Cứt :))
Xem chi tiết
Lê Thị Kiều My
Xem chi tiết
Huong Tran
Xem chi tiết