Cho các số :a,b,c,x,y,z thỏa mãn điều kiện : x/a=y/2b=z/3c. CMR: 2bz-3cy/a=3cx-az/2b=ay-2bx/3c
Các số a, b, c, d thỏa mãn điều kiện: \(\dfrac{a}{3b}=\dfrac{b}{3c}=\dfrac{c}{3d}=\dfrac{d}{3a}\)và a + b + c + d \(\ne0.\) Chứng minh rằng a = b = c = d
Cho các số a,b,c không âm thỏa mãn: a+3c=8 ; a+2b=9 . Tìm GTLN của biểu thức: P= a+b+c
Cho các số thực a, b, c thỏa mãn:
(2a + 2b + 2c)3 = 12 + (2a + b - c) 3+ (2b + c - a)3+ (2c + a - b) 3
Chứng minh rằng (a + 3b)(b + 3c)(c + 3a) = 4
Giúp mk nhanh vs ạ
cho đa thức f(x)=ax^2 +bx +c(a,b,c là các hằng số). Chứng minh rằng:f(3). f(-2)>=0 nếu a,b thỏa mãn a +b=0
Bài 17: Cho a, b, c là 3 số thực khác 0, thỏa mãn điều kiện : \(a+b\ne-c\) và \(\dfrac{a+b-c}{c}\)=\(\dfrac{b+c-a}{a}\)=\(\dfrac{c+a-b}{b}\). Tính giá trị biểu thức P=\(\left(1+\dfrac{b}{a}\right)\)x\(\left(1+\dfrac{a}{c}\right)\)x\(\left(1+\dfrac{c}{b}\right)\)
Tìm các số a, b, c không âm thỏa mãn a + 3c = 8; a + 2b = 9 và tổng a + b + c có giá trị lớn nhất.
1 ) Cho ba số a , b , c khác 0 thỏa mãn điều kiện : \(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}-\frac{a+b+3c}{c}\)
Tính giá trị biểu thức \(P=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
2 ) Tìm các cặp số nguyên \(\left(x,y\right)\)thỏa mãn \(x+2y=3xy+3\)
Cho \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\)
Chứng minh rằng \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)
(với giả thiết các phân số trên đều có nghĩa)