Theo tính chất của dãy tỉ số bằng nhau :
\(\dfrac{a}{3b}=\dfrac{b}{3c}=\dfrac{c}{3d}=\dfrac{d}{3a}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)
Vì a + b + c + d khác 0 . Ta có :
\(a=\dfrac{1}{3}.3b=b\)(1)
\(b=\dfrac{1}{3}.3c=c\)(2)
\(c=\dfrac{1}{3}.3d=d\)(3)
\(d=\dfrac{1}{3}.3a=a\)(4)
Từ (1);(2);(3) và (4)
=> a = b = c = d