a: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a+b}{a}=\dfrac{bk+b}{bk}=\dfrac{k+1}{k}\)
\(\dfrac{c+d}{c}=\dfrac{dk+d}{dk}=\dfrac{k+1}{k}\)
Do đó: \(\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
b: \(\dfrac{a-b}{a}=\dfrac{bk-b}{bk}=\dfrac{k-1}{k}\)
\(\dfrac{c-d}{c}=\dfrac{dk-d}{dk}=\dfrac{k-1}{k}\)
Do đó: \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
c: \(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{k}{k+1}\)
\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)