Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{a+b}{a}=\dfrac{bk+b}{bk}=\dfrac{k+1}{k}\)
\(\dfrac{c+d}{c}=\dfrac{dk+d}{dk}=\dfrac{k+1}{k}\)
Do đó: \(\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
b: Sửa đề: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
\(\dfrac{a+b}{a-b}=\dfrac{bk+b}{bk-b}=\dfrac{k+1}{k-1}\)
\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{k+1}{k}\)
Do đó: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)