\(a+c=2b\\ \Leftrightarrow d\left(a+c\right)=2bd\\\Leftrightarrow d\left(a+c\right)=c\left(b+d\right) \\ \Leftrightarrow ad+cd=cb+cd\\ \Leftrightarrow ad=cb\\ \Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
\(a+c=2b\\ \Leftrightarrow d\left(a+c\right)=2bd\\\Leftrightarrow d\left(a+c\right)=c\left(b+d\right) \\ \Leftrightarrow ad+cd=cb+cd\\ \Leftrightarrow ad=cb\\ \Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh rằng nếu a+c=2b và 2bd = c (b+d) thì \(\dfrac{a}{b}=\dfrac{c}{d}\) với b , d khác 0
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh rằng \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
bằng 3 các(giả thiết a khác b;c khác d và mỗi số a,b,c,d khác 0)
Cho các số hữu tỉ \(x=\dfrac{a}{b};y=\dfrac{c}{d};z=\dfrac{a+c}{b+d}\left(a,b,c,d\in Z;b>0;d>0\right)\)
Chứng minh rằng nếu x < y thì x < y < z .
Nếu a+c=2b và 2bd=c(b+d) thì \(\dfrac{a}{b}=\dfrac{c}{d}\) \(\left(b,d\ne0\right)\)
Cho a+c=2b và 2bd = c(b+d). CMR : \(\dfrac{a}{b}=\dfrac{c}{d}\)
1 Chứng tỏ rằng :
a) 0,(43) + 0,(56) = 1
b) 0,(333) . 3 = 1
2. Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) Chứng minh \(\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)
3. Tìm a,b,c
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\) và a + 2b - 3c = -20
Chứng minh rằng nếu: \(\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}\) trong đó a + b + c + d ≠ 0 thì a = c.
Cho các số hữu tỉ \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\) với mẫu dương, trong đó \(\dfrac{a}{b}< \dfrac{c}{d}\) . Chứng minh rằng :
\(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng
a) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+4c}{b+4d}\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3a+2c}{3b+2d}\)
c) \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-2b}{c-2d}\)
d) \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{5a-2b}{5c-2d}\)