Lời giải:
Do $n$ lẻ nên đặt $n=2k+1$ (\(k\in\mathbb{Z})\)
Ta có:
\(n^3+3n^2-n-3=n^2(n+3)-(n+3)=(n^2-1)(n+3)\)
\(=(n-1)(n+1)(n+3)=(2k+1-1)(2k+1+1)(2k+1+3)\)
\(=8k(k+1)(k+2)\)
Vì \(k(k+1)(k+2)\) là tích 3 số nguyên liên tiếp nên \(k(k+1)(k+2)\vdots 3\) và \(k(k+1)(k+2)\vdots 2\)
Mà $(2,3)=1$ nên \(k(k+1)(k+2)\vdots 6\)
\(\Rightarrow n^3+3n^2-n-3\vdots (8.6=48)\)
Ta có đpcm.