Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tokuya Ariko

Chứng minh rằng M không là số tự nhiên với a, b, c, d là các số tự nhiên

\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}\)

Lê Mỹ Linh
22 tháng 3 2016 lúc 16:39

@Bài sửa

Với a, b, c, d là các số tự nhiên

\(\Rightarrow\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{b+c+a};\frac{c}{c+a}>\frac{c}{c+a+b}\)

\(\Rightarrow M>\left(\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}\right)\)

\(\Rightarrow M>1\)                (*)

Ta lại có:

\(\frac{a}{a+b}<\frac{a+b}{a+b+c};\frac{b}{b+c}<\frac{b+c}{b+c+a};\frac{c}{c+a}<\frac{c+a}{c+a+b}\)

\(\Rightarrow M<\left(\frac{a+b}{a+b+c}+\frac{b+c}{b+c+a}+\frac{c+a}{c+a+b}\right)\)

\(\Rightarrow M<2\)               (**)

Từ (*) và (**) ta có 1 < M < 2 suy ra M không là số tự nhiên

leu

Lê Mỹ Linh
20 tháng 3 2016 lúc 17:46

Với a, b, c, d là các số tự nhiên

\(\Rightarrow\frac{a}{a+b}<\frac{a}{a+b+c};\frac{b}{b+c}<\frac{b}{b+c+a};\frac{c}{c+a}<\frac{c}{c+a+b}\)

\(\Rightarrow M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=1\)

\(\Rightarrow M<1\)           (*)

Ta lại có: 

\(\frac{a}{a+b}>\frac{a+b}{a+b+c};\frac{b}{b+c}>\frac{b+c}{b+c+a};\frac{c}{c+a}>\frac{c+a}{c+b+a}\)

\(\Rightarrow M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b}{a+b+c}+\frac{b+c}{b+c+a}+\frac{c+a}{c+a+b}=2\)

\(\Rightarrow M<2\)           (**)

Từ (*) và (**) ta có 1 < M < 2 suy ra M không là số tự nhiên

 

Lê Mỹ Linh
20 tháng 3 2016 lúc 17:48

* Chú ý: Để giải bài toán này ta áp dụng công thức:

\(\frac{a}{b}<\frac{a+c}{b+c}\) (với a, b, c cũng là các số tự nhiên)


Các câu hỏi tương tự
Tùng Trần Sơn
Xem chi tiết
Thành Công
Xem chi tiết
Lan Trịnh Thị
Xem chi tiết
nguyen dinh thi
Xem chi tiết
Trần Huy tâm
Xem chi tiết
Đình Khang
Xem chi tiết
Lan Trịnh Thị
Xem chi tiết
poppy Trang
Xem chi tiết
Bình Trần Thị
Xem chi tiết