a: \(\sin2a=\sin\left(a+a\right)\)
\(=\sin a\cdot\cos a+\cos a\cdot\sin a\)
\(=2\sin a\cdot\cos a\)
b: \(\cos2a=\cos^2a-\sin^2a\)
\(=1-\sin^2a-\sin^2a\)
\(=1-2\sin^2a\)
a: \(\sin2a=\sin\left(a+a\right)\)
\(=\sin a\cdot\cos a+\cos a\cdot\sin a\)
\(=2\sin a\cdot\cos a\)
b: \(\cos2a=\cos^2a-\sin^2a\)
\(=1-\sin^2a-\sin^2a\)
\(=1-2\sin^2a\)
Cho góc nhọn α
a) Rút gọn biểu thức S=\(\cos^2\alpha+tg^2.\cos^2\alpha\)
b) Chứng minh:
\(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha.\cos\alpha}=4\)
Help me plsssssssssss
Chứng minh rằng với α là góc nhọn thì giá trị của các biểu thức sau không phụ thuộc vào độ lớn của α
A=\(\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
B=\(\sin^4\alpha+\cos^4\alpha-1+2\sin^2\alpha.\cos^2\alpha\)
C=\(\sin^4\alpha-\cos^4\alpha+2\cos^2\alpha-1\)
Chứng minh rằng với mọi gíc nhọn α tùy ý, mỗi biểu thức sau không phụ thuộc α
a, A=(Sin α + Cos α )2 + (Sin α - Cos α )2
b, B=Sin6 α + Cos6 α + 3Sin2 α . Cos2 α
1. Chứng minh rằng: \(\frac{1-2\sin.\cos\alpha}{sin^2\alpha-\cos^2\alpha}=\frac{sin\alpha-\cos\alpha}{sin\alpha+\cos\alpha}\) (\(\alpha\ne45^o\))
2. Chứng minh: \(\cos^4\alpha+\sin^2\alpha.\cos^2\alpha+\sin^2\alpha\) không phụ thuộc vào x
Sử dụng định nghĩa các tỉ số lượng giác của một góc nhọn để chứng minh rằng : Với góc nhọn \(\alpha\) tùy ý, ta có :
a) \(tg\alpha=\dfrac{\sin\alpha}{\cos\alpha}\)
\(cotg\alpha=\dfrac{\cos\alpha}{\sin\alpha}\)
\(tg\alpha.cotg\alpha=1\)
b) \(\sin^2\alpha+\cos^2\alpha=1\)
Gợi ý : Sử dụng định lí Pytago
Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào số đo góc nhọn \(\alpha\) :
B= \(\cos^2\alpha+\cos^2\alpha.\sin^2\alpha+\sin^4\alpha\)
C= \(\frac{1}{1+\sin\alpha}+\frac{1}{1-\sin\alpha}-2\tan^2\alpha\)
Với 0<α<45
chứng minh \(\cos^2\alpha-\sin^2\alpha=\cos2\alpha\)
Với 0 < α < 45 độ
chứng minh \(\cos^2\alpha-\sin^2\alpha=cos2\alpha\)
Chứng minh:
a)\(cot^2\alpha-cos^2\alpha\cdot cot^2\alpha=cos^2\alpha\)
b)\(tan^2\alpha-sin^2\alpha\cdot tan^2\alpha=sin^2\alpha\)
c) \(\dfrac{1-cos^2}{sin\alpha}\) = \(\dfrac{sin\alpha}{1+cos\alpha}\)
d)\(tan^2\alpha-sin^2\alpha=tan^2\cdot sin^2\alpha\)
e) \(\sin^6\alpha+cos^6\alpha+3sin^2\cdot cos^2\alpha=1\)