Gọi hai số lẻ đó là 2k+1 và 2k+3 (k\(\in\)Z)
Ta có:
(2k+3)\(^2\)- (2k+1)\(^2\)= (2k+3+2k+1)(2k+3-2k-1)
= (4k+4).2
=8.(k+1)
Vì 8\(⋮\)8 \(\Rightarrow\)8.(k+1) \(⋮\)8
\(\Leftrightarrow\) (2k+3)\(^2\)-(2k+1)\(^2\)\(⋮\)8 (đpcm)
Gọi hai số lẻ đó là 2k+1 và 2k+3 (k\(\in\)Z)
Ta có:
(2k+3)\(^2\)- (2k+1)\(^2\)= (2k+3+2k+1)(2k+3-2k-1)
= (4k+4).2
=8.(k+1)
Vì 8\(⋮\)8 \(\Rightarrow\)8.(k+1) \(⋮\)8
\(\Leftrightarrow\) (2k+3)\(^2\)-(2k+1)\(^2\)\(⋮\)8 (đpcm)
chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 9
Cho p là số nguyên tố khác 2 và a,b là hai số tự nhiên lẻ sao cho a+b chia hết cho p và a-b chia hết cho p-1. Chứng minh rằng \(a^b+b^a\) chia hết cho p
1. Chứng minh rằng tổng bình phương hai số lẻ bất kỳ không là số chính phương
2. Cho 3 số a,b,c sao cho a=b+c. Chứng minh 2(ab+ac-bc) là tổng của 3 số chính phương
3. Cho n=1.3.5.7...2007. Chứng minh trong 3 số nguyên liên tiếp 2n-1,2n,2n+1 không có số nào là số chính phương
4. Tìm số chính phương có 4 chữ số biết 2 chữ số đầu giống nhau, hai chữ số cuối giống nhau
Chứng minh rằng :
a) \(n^3+6n^2+8n\) chia hết cho 48 với mọi số chẵn n
b) \(n^4-10n^2+9\) chia hết cho 384 với mọi số lẻ n
Chứng minh rằng tích của một số chính phương với số liền trước nó là số chia hết cho 12
Cho hai số tự nhiên a,b bất kì.Chứng tỏ rằng:
a,a.b(a+b) luôn chia hết cho 2
b,Nếu a+b không chia hết cho 2 thì tích a.b chia hết cho 2
câu 1: a, chứng tỏ rằng phương trình: mx-3=2m-x-1 luôn nhận x=2 làm nghiệm với mọi giá trị của m.
b, Cho hai số chính phương liên tiếp. Chứng minh rằng tổng của 2 số đó cộng với tích của chúng là một số chính phương lẻ.
Cho hai số nguyên dương a, b thỏa mãn a2 chia hết cho b, b3 chia hết cho a2, a4 chia hết cho b3, ... Chứng minh rằng : a = b
1)Tìm giá trị nhỏ nhất của biểu thức 3x^2-x+1.
2)Chứng minh rằng tổng lập phương của một số nguyên với 11 lần số đó là một số chia hết cho 6.