Chứng minh rằng:
52005 + 52003 chia hêt cho 13
b) a2 + b2 + 1 ≥ ab + a + b
Cho a + b + c = 0. chứng minh:
a3 + b3 + c3 = 3abc
Các cao nhân giúp em ạ
em cảm ơn trước
Cho p là số nguyên tố khác 2 và a,b là hai số tự nhiên lẻ sao cho a+b chia hết cho p và a-b chia hết cho p-1. Chứng minh rằng \(a^b+b^a\) chia hết cho p
Cho hai số tự nhiên a,b bất kì.Chứng tỏ rằng:
a,a.b(a+b) luôn chia hết cho 2
b,Nếu a+b không chia hết cho 2 thì tích a.b chia hết cho 2
a, Chứng minh bất đẳng thức a2+b2+2 ≥ 2(a+b)
b,Cho hai số thực x,y thỏa mãn điều kiện: x^2+y^2 = 1. Tìm GTLN và GTNN của x+y
c, Cho a,b > 0 và a+b = 1. Tìm GTNN của S=\(\dfrac{1}{ab}\)+1/a2+b2
Cho a,b,c thỏa mãn a2+b2=c2.Chứng minh ab chia hết cho (a+b+c)
Cho a , b là các số nguyên thỏa mãn (a+b) chia hết cho 3. CM (a3 +b3 ) chia hết cho 9
Chứng minh rằng :
a) \(n^3+6n^2+8n\) chia hết cho 48 với mọi số chẵn n
b) \(n^4-10n^2+9\) chia hết cho 384 với mọi số lẻ n
chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 9
1.Chứng minh nếu n ∈ N* thì
\(25^n+7^n-4^n\left(3^n+5^n\right)\) chia hết cho 65
2.cho a,b là hai số nguyên dương phân biệt thỏa mãn 2a\(^2\)+a=3b\(^2\)+b
chứng minh a-b và 2a+2b+1 là các số chính phương