Chứng minh rằng f(x)=ax^3+bx^2+c có giá trị nguyên với mọi x nguyên khi và chỉ khi 6a, 2b,a+b và c là số nguyên
Cho đa thức f(x)=ax^2 +bx+c với a,b,c là các số thực . biết rằng f(0);f(1);f(2)có giá trị nguyên , chứng minh rằng 2a, 2b có giá trị nguyên
Đa thức f(x) = ax2 + bx = c có a;b;c là các số nguyên và a \(\ne\) 0 . Biết với mọi giá trị nguyên của x thì f(x) chia hết cho 7 . Chứng minh rằng : a;b;c cũng chia hết cho 7
Cho f(x)=ax\(^2\)+bx+c. Biết f(0),f(1),f(2)là số nguyên. Chứng minh rằng: f(x) luôn nhận giá trị nguyên với mọi x.
a) Cho đa thức F(x)= \(ax^2+bx+c\). Các số a, b, c là các số thực thỏa mãn: \(13a+b+2c\). Chúng minh F(-2).F(3)\(\le\)0.
b) Cho đa thức F(x)=\(ax^2+bx+c\). Biết \(5x+b+2c=0\).Chứng minh F(2).F(-1)\(\le\)0.
Cho đa thức f(x) = ax^3 + bx^2 + cx +d trong đó a,b,c,d \(\in\) Z và thỏa mãn b = 3a + c
Chứng minh rằng f(1)*f(-2) là bình phương của một số nguyên.
Cho đa thức f(x) = ax2 + bx +c. Chứng minh rằng nếu f(x) nhận 1 và -1 là nghiệm thì a và c là 2 số đối nhau.
Giúp em với:
Cho đa thức f(x)=ax^2+bx+c với a,b,c là các hệ số cho trước.
Biết rằng f(1)+f(-1) chia hết cho 3. Chứng minh a+c chia hết cho 3.
Em đang cần gấp, cám ơn nhiều lắm ạ.
Cho đa thức f(x) = ax2 + bx + c (với a,b,c là hằng số). Chứng minh rằng:
a) Nếu a + b + c = 0 thì đa thức f(x) có 1 nghiệm là x = 1.
b) Nếu a - b + c = 0 thì đa thức f(x) có 1 nghiệm là x = -1.