xét hàm số
f(x)=\(\sqrt[4]{2x}+2\sqrt[4]{6-x}+\sqrt{2x}+2.\sqrt{6-x}\)
D \(\in\left[0;6\right]\)
f'(x)= \(\frac{1}{2.\left(2x\right)^{\frac{3}{4}}}-\frac{1}{2.\left(6-x\right)^{\frac{3}{4}}}+\frac{1}{\sqrt{2x}}-\frac{1}{\sqrt{6-x}}\)
đặt u=\(\left(2x\right)^{\frac{3}{4}}\) \(\left(u\ge0\right)\), v=\(\left(6-x\right)^{\frac{3}{4}}\) \(\left(v\ge0\right)\)
f'(x)= \(\frac{1}{2}.\frac{\left(v^3-u^3\right)}{\left(u.v\right)^3}+\frac{v-u}{u.v}=\frac{\left(v-u\right).\left(v^2+u.v+u^2\right)}{\left(u.v\right)^3}+\frac{v-u}{u.v}=\left(v-u\right).\left(\frac{v^2+u.v+u^2}{\left(u.v\right)^3}+\frac{1}{u.v}\right)\)
\(=\left(v-u\right).g\left(u,v\right)\) ... với g(u,v) > 0
Vậy f'(x) = [(√(2x) - √(6-x)] .G(x), G(x)>0
f'(x)=0 <=> √(2x) - √(6-x) = 0 <=> x=2
lập bảng biến thiên:
tự vẽ
tính f(0), f(2), f(6)
ta được f(x)=m có 2 nghiệm
<=> f(0) \(\le\)m < f(2)
<=> \(2.6^{\frac{1}{4}}+2\sqrt{6}\le m< 3.2^{\frac{1}{4}}+6\)
Cho hàm số \(f\left(x\right)\) liên tục trên tập xác định và có \(f’\left(x\right)=2x\left(x^2-4\right)^3\left(x^4+16\right)^2\)
Xác định tấc cả nghiệm thực của phương trình sau: \(2f\left(\frac{1}{4}x^4+x^2-5\right)-3=0\)
a) 0
b) 1
c) 2
d) có ít nhất 3 nghiệm
Chứng minh hàm số \(f\left(x\right)=x-sinx\) đồng biến trên \(\left[0;\dfrac{\pi}{2}\right]\)
Cho tam thức f(x)=\(x^2+bx+c\) chứng minh rằng nếu phương trình f(x)=x có hai nghiệm phân biệt và \(b^2-2b-3>4c\) thì phương trình f[f(x)]=x có 4 nghiệm phân biệt
Cho hàm số \(f\left(x\right)\) xác định trên \(R\), có đạo hàm \(f'\left(x\right)=\left(x^2-4\right)\left(x-5\right)\forall x\in R\) và \(f\left(1\right)=0\). Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(g\left(x\right)=\left|f\left(x^2+1\right)-m\right|\) có nhiều điểm cực trị nhất?
A.7 B. 8 C. 5 D. 6
Cho hs y=f(x) có đạo hàm liên tục trên [1,2] thỏa mãn đẳng thức \(\dfrac{3x^3f\left(x\right)}{f'\left(x\right)^2+xf'\left(x\right)+x^2}=f'\left(x\right)-x\) ∀x∈ [1;2] và\(f\left(1\right)=\dfrac{7}{3}\) .Tính f(2).
Cho hàm số \(y=f\left(x\right)\) có 2 cực trị tại \(x_1=-1,x_2=2\). Gọi \(F\left(x\right)\) là một nguyên hàm của \(f\left(x\right)\) , \(F\left(0\right)=0\). Biết \(\int\limits^2_{-1}-F\left(x\right)dx=\frac{123}{40}\) và thoả mản \(\int\limits^2_{-1}f’\left(x\right)f”\left(x\right)dx=0\). Hỏi phương trình \(2f\left(x\right)+4x=0\) có bao nhiêu nghiệm.
a) 0
b) 1
c) 2
d) 3
tìm m để đồ thị hàm số sau có đúng 2 tiệm cận đứng
a) y=\(\frac{3}{4\text{x^2+2(2m+3)x+m^2-1}}\)
b) y=\(\frac{2+x^2}{3\text{x}^2+2\left(m+1\right)x+4}\)
c) y=\(\frac{x+3}{x^2+x+m-2}\)
d) y=\(\frac{x-3}{x^2+2\left(m+2\right)x+m^2+1}\)
e) y=\(\frac{x-1}{x^2+2\left(m-1\right)x+m^2-2}\)
f) y=\(\frac{3}{2\text{x}^2+2m\text{x}+m-1}\)
Chứng minh họ đường cong (Cm) \(y=x^3-3\left(m-2\right)x^2+3\left(m^2-4m+3\right)x-m^3+6m^2-9m+2\)luôn tiếp xúc với 2 đường thẳng cố định