Ôn tập chương 1: Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Tiền Châu

chứng minh rằng \(a^3+b^3+c^3+3abc>=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

Lightning Farron
1 tháng 9 2017 lúc 18:15

Không mất tính tổng quát giả sử \(a\ge b\ge c\)

\(a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

\(\Leftrightarrow a\left(a-b\right)\left(a-c\right)+b\left(b-c\right)\left(b-a\right)+c\left(c-a\right)\left(c-b\right)\ge0\) (đúng)

Hoặc nó tương đương \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\dfrac{2b}{2}=b\)

Tương tự rồi nhân theo vế cũng thu được ĐPCM


Các câu hỏi tương tự
Vũ Tiền Châu
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Khởi My
Xem chi tiết
Dang Son Nguyen
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Nguyễn Mary
Xem chi tiết
Lê Thị Khánh Huyền
Xem chi tiết
Quý Thiện Nguyễn
Xem chi tiết
Nguyen Duc Anh
Xem chi tiết