Ta có: \(2^{2n+1}=2.2^{2n}\) chia cho \(3\) dư \(2\forall n\in N.\)
\(\Rightarrow2^{2n+1}=3k+2\left(k\in N\right)\)
\(\Rightarrow A=2^{2^{2n+1}}+31=2^{3k+2}+31=4\left(2^3\right)^k+31=4.8^k+31\)
Lại có: \(8^k\) chia cho \(7\) dư \(1\forall k\in N\)
\(\Rightarrow4.8^k\) chia cho \(7\) dư \(4\forall k\in N\)
\(\Rightarrow4.8^k+31\) chia hết cho \(7\forall k\in N\)
\(\Rightarrow A=2^{2^{2n+1}}+31\) chia hết cho \(7\forall n\in N\)
Mà: \(A>7\)
\(\RightarrowĐpcm\)