\(x^2+y^2\ge2xy\\ \Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\\ \Leftrightarrow x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
đẳng thức xảy ra khi x=y
\(x^2+y^2\ge2xy\\ \Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\\ \Leftrightarrow x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
đẳng thức xảy ra khi x=y
cho a,b,c >0 thỏa mãn a.b.c=1. chứng minh rằng \(\dfrac{1}{a^3.\left(b+c\right)}+\dfrac{1}{b^3\left(a+c\right)}+\dfrac{1}{c^3.\left(a+b\right)}>=\dfrac{3}{2}\)
Chứng minh rằng:
a, \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
b, \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
c, \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)
d, \(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=2\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\)
Tìm giá trị biểu thức D = \(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2\)
Chứng minh các bất đẳng thức sau:
a. \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
b. \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)
Chứng minh rằng với mọi số tự nhiên n:
\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}...+\dfrac{1}{n^2+\left(n+1\right)^2}< \dfrac{9}{20}\)
Chứng minh bđt:
\(\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge\dfrac{9}{2}\forall a,b,c>0\)
Cho x>0, y>0. Chứng minh: (x+y).\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) \(\ge\) 4
Chứng minh rằng :
a) \(a^3+b^3>hoặc=ab\left(a+b\right)\)
b) \(a^2+b^2+c^2>hoặc=ab+2\left(a+b\right)\)
c) \(a^2+b^2>hoặc=\dfrac{1}{2}\) với a+b=1
d) \(a^3+b^3>hoặc=\dfrac{1}{4}\) với a+b=1
Giải PT:
a, \(\dfrac{x^2+x+1}{x^2+x+2}+\dfrac{x^2+x+2}{x^2+x+3}=\dfrac{7}{6}\)
b, \(\dfrac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\dfrac{19}{49}\)
c, \(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)
Help me!!! Mk cần gấp!!!