Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Son Goku

Chứng minh rằng 7 số tự nhiên bất kỳ luôn tồn tại 4 số tự nhiên sao cho tổng của chúng chia hết cho 4 (Bài này sử dụng định lý Đi-rích-lê)

Trần Thị Hương
24 tháng 1 2018 lúc 21:03
Đặt 7 số TN đó là A, B, C, D, E, F, G. Lấy kết quả của bài 1: Trong 3 số tự nhiên bất kỳ luôn có 2 số là số chẵn ( chia hết cho 2) A, B, C Và D,E, F mỗi nhóm có 1 cặp chia hết cho 2 * Giả thử (A+B) =2 m và (D+E)=2n --> (A+B) + (C+D)= 2(m+n) Còn 3 số C, F, G sẽ có 1 cặp chia hết cho 2 ( C + F) = 2 p Với m,n,p cúng là số tự nhiên Trong 3 số m, n, p luôn chọn được 2 số có tổng chia hết cho 2. *Giả thử (m + n) =2q ( q là số TN) thì ta có (A+B) + (C+D)= 2(m+n) = 4q ==> A+B+C+D chia hết cho 4 (ĐPCM) Tương tự nếu chon các nhóm số khác ta cũng được 4 số trong 7 số bât kỳ trên chia hết cho 4

Chú ý:

- Tài liệu này chỉ nêu 1 trường hợp, còn các trường hợp khác nêu “CM tương tự”
Đạt Trần
24 tháng 1 2018 lúc 21:57
Giải: Đặt 7 số TN đó là A, B, C, D, E, F, G. Lấy kết quả của bài 1: Trong 3 số tự nhiên bất kỳ luôn có 2 số là số chẵn ( chia hết cho 2) A, B, C Và D, E, F mỗi nhóm có 1 cặp chia hết cho 2 * Giả thử (A+B) =2 m và (D+E)=2n --> (A+B) + (C+D)= 2(m+n) Còn 3 số C F G sẽ có 1 cặp chia hết cho 2 ( C + F) = 2 p Với m,n,p cúng là số tự nhiên Trong 3 số m, n, p luôn chọn được 2 số có tổng chia hết cho 2. *Giả thử (m + n) =2 q ( q là số TN) thì ta có (A+B) + (C+D)= 2(m+n) = 4q ==> A+B+C+D chia hết cho 4 (ĐPCM) Tương tự nếu chon các nhóm số khác ta cũng được 4 số trong 7 số bât kỳ trên chia hết cho 4

Các câu hỏi tương tự
BÍCH THẢO
Xem chi tiết
BÍCH THẢO
Xem chi tiết
Maria Shinku
Xem chi tiết
Maria Shinku
Xem chi tiết
BÍCH THẢO
Xem chi tiết
pham mai linh
Xem chi tiết
Wolf galss
Xem chi tiết
Nguyễn Ngọc Khánh Trân
Xem chi tiết
Tạ Quang Hiếu
Xem chi tiết