`1/(x+1)-1/(x+2)`
`=(x+2-x-1)/((x+1)(x+2))`
`=1/((x+1)(x+2))(ĐPCM)`
\(\dfrac{1}{x+1}-\dfrac{1}{x+2}=\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}=\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}=\dfrac{1}{\left(x+1\right)\left(x+2\right)}\left(đpcm\right)\)
Ta có: \(\dfrac{1}{x+1}-\dfrac{1}{x+2}\)
\(=\dfrac{x+2}{\left(x+1\right)\left(x+2\right)}-\dfrac{x+1}{\left(x+1\right)\left(x+2\right)}\)
\(=\dfrac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}=\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)(đpcm)