cho a + b + c = 3 a b c 0. chứng minh rằng a/(1+b^2)+b/(1+c^2)+c/(1+a^2) =3/2
BT1: Cho a+b>1. Chứng minh: a4+b4>=\(\dfrac{1}{8}\)
BT2: Cho a,b,c>0. Chứng minh rằng: \(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}>=a+b+c\)
1. Cho 3 số a,b,c, thỏa mãn abc khác 1; a2/b+c + b2/a+c + c2/b+a = 0
Chứng minh rằng: a/b+c + b/a+c + c/a+b = 1
2. Rút gọn biểu thức A = (a4 - 5a2 + 4)/(a4 - a2 + 4a - 4)
3. Cho m,n thuộc Z. Chứng minh rằng: mn(m2 - n2) chia hết cho 6
4. Tìm giá trị nhỏ nhất của A= (x - 2)(x - 4)(x2 - 6x + 10)
5. Gọi H là trực tâm của tam giác nhọn ABC. Chứng minh rằng: HA + HB + HC < 2/3(AB + AC + BC)
Cho a+b=1, ab khác 0. Chứng minh rằng: \(\frac{a}{b^3-1}-\frac{b}{a^3-1}\) = \(\frac{2\left(b-a\right)}{a^2b^2+3}\)
Chứng minh rằng: \(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}\le1\) với mọi a,b
Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) và \(a+b+c=3abc\). Chứng minh \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=3\)
Cho ba số dương a,b,c thỏa mãn \(a^2+b^2+c^2=1\) . Chứng minh rằng:
\(\dfrac{a^2}{1+b-a}+\dfrac{b^2}{1+c-b}+\dfrac{c^2}{1+a-c}\) \(\geq\) 1
Cho a/a+b+b/a+c+c/a+b=1. Chứng minh rằng: a2/b+c+b2/c+a+c2/a+b=0
Bài 1: Cho a và b là hai số tự nhiên. Biết a chia cho 3 dư 1; b chia cho 3 dư 2. Hỏi tích A = a.b chia cho 3 dư bao nhiêu ?
Bài 2: Chứng minh rằng với mọi nÎ Z thì
a) n.(n + 5) - (n - 3).(n + 2) chia hết cho 6.
b) (n - 1).(n + 1) - (n - 7).( n - 5) chia hết cho 12.
Bài 3: Xác định các hệ số a; b; c biết
a) (2x - 5).(3x + b) = ax2 + x + c
b) (ax + b).(x2 - x - 1) = ax3 + cx2 - 1